Пример текста. Радиус окружности описанной около равнобедренного треугольника, равен 17, а высота, проведенная к основанию равна 25. Найдите площадь треугольника.

Оцените сложность задачи:
0 голосов, средняя сложность: 0.0000

Решения задачи

Создано: @nick 10 августа 2017 07:52
поставьте оценку:
1 голосов, средний бал: 5.0000

Данные задачи: равнобедренный треугольник

Радиус описанной окружностиR17
Высота, проведенная к основанию BD=h25
Площадь треугольника?
Изобразим на рисунке условия задачи

Изобразим на рисунке условия задачи

Треугольник равнобедренный, поэтому центр описанной окружности

$ O ∈ BD $

$ OA = OB = R = 17 $

$ OD = BD - OA = 25 - 17 = 8 $

По теореме Пифагора

$ AD = \sqrt{(OA)^{2}-(OD)^{2}}=\sqrt{17^{2}-8^{2}}=15 $

$ b = AC = 2AD = 2 × 15 = 30 $

Тогда

$ S = \frac{1}{2}bh = \frac{1}{2}30×25 = 375 $

Ответ:

$ Площадь треугольника равна 375 $

Чтобы предложить решение пожалуйста войдите или зарегистрируйтесь

Записать новую задачу Все задачи Все темы Все геометры