Даны вершины треугольника АВС. Найти: 1)Длину стороны АВ. 2) внутренний угол А в радианах с точностью до двух знаков после запят

Тема задачи: Нахождение площадей фигур Создано: @1q2w3e 17 декабря 2016 20:57

A(-5;7), B(7;-2), C(11;20) Даны вершины треугольника АВС. Найти: 1)Длину стороны АВ. 2) внутренний угол А в радианах с точностью до двух знаков после запятой. 3) уравнение медианы СМ. 4) уравнение высоты СК. 5) точку пересечения высот (т. F). 6) площадь треугольника АВС. Сделать чертеж.

Оцените сложность задачи:
0 голосов, средняя сложность: 0.0000

Решения задачи

Создано: @nick 7 августа 2017 19:15
поставьте оценку:
0 голосов, средний бал: 0.0000

Изобразим на рисунке условия задачи

Изобразим на рисунке условия задачи

Длина стороны треугольника находится по формуле

$ |AB| = \sqrt{(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}} $

подставляем в формулу значения координат

$ |AB| = \sqrt{(7+5)^{2}+(-2-7)^{2}}=\sqrt{(12)^{2}+(-9)^{2}}=15 $

Чтобы найти угол A, необходимо узнать длину стороны AC

$ |AC| = \sqrt{(11+5)^{2}+(20-7)^{2}}=\sqrt{(16)^{2}+(13)^{2}}=20,61 $

формула 4

$ \vect{AB} = (7+5; -2-7)=(12; -9) $

формула 5

$ \vect{AC} = (11+5; 20-7)=(16; 13) $

формула 6

$cos(⦟A)=cos(\vect{AB}^\vect{AC})=\frac{\vect{AB}×\vect{AC}}{|AB|×|AC|}=\frac{12×16+(-9)×13}{15×20,61}=0,24$

формула 7

$ ⦟A = arccos(⦟A)=arccos(0.24)=1,33 рад $

Переводим радианы в градусы

$ ⦟A = \frac{0,90×180}{3,14}=76.24° $

Находим координаты точки M

$ x_{M} = \frac{x_{A}+x_{B}}{2}=\frac{-5+7}{2}=1 $

и

$ y_{M} = \frac{7+(-2)}{2}=2,5 $

$ M(1; 2,5) $

Уравнение прямой через две точки (медианы CM)

$ CM = \frac{x-x_{C}}{x_{M}-x_{C}}=\frac{y-y_{C}}{y_{M}-y_{C}} $

подставив значения координат, получаем

$ \frac{x-11}}{1-11}=\frac{y-20}}{\frac{5}{2}-20} $

Откуда находим

$ y=(x-11)(5-40)=-20(y-20) $

Раскрываем скобки

$ -35x+385=-20y+400 $

Откуда находим

$ 20y-35x-15=0 $

Делим левую и правую части уравнения на 5

$ 4y-7x-3=0 $

Ответ:

$ Длина стороны AB равна 15; $

$ Внутренний угол при вершине A равен 76,24°; $

$ Уравнение медианы CM: y=\frac{7}{4}x+\frac{3}{4}. $

Чтобы предложить решение пожалуйста войдите или зарегистрируйтесь

Записать новую задачу Все задачи Все темы Все геометры